Conv2d
对输入 Tensor 计算二维卷积,输入的 shape 为 \((N, H_{in}, W_{in}, C_{in})\),其中 \(N\) 为 batch size,\(C\) 为通道数,\(H\) 为特征图的高度,\(W\) 为特征图的宽度。
根据以下公式计算输出:
其中,\(bias\) 为输出偏置,\(\text{ccor}\) 为 cross-correlation 操作,\(weight\) 为卷积核的值,\(X\) 为输入的特征图。
\(i\) 对应 batch 数,其范围为 \([0, N-1]\),其中 \(N\) 为输入 batch。
\(j\) 对应输出通道,其范围为 \([0, C_{out}-1]\),其中 \(C_{out}\) 为输出通道数,该值也等于卷积核的个数。
\(k\) 对应输入通道数,其范围为 \([0, C_{in}-1]\),其中 \(C_{in}\) 为输入通道数,该值也等于卷积核的通道数。
因此,上面的公式中,\(bias(C_{out_j})\) 为第 \(j\) 个输出通道的偏置,\(weight(C_{out_j}, k)\) 表示第 \(j\) 个卷积核在第 \(k\) 个输入通道的卷积核切片,\(X(N_i, k)\) 为特征图第 \(i\) 个 batch 第 \(k\) 个输入通道的切片。卷积核 shape 为 \((\text{kernel_size}[0], \text{kernel_size}[1])\),其中 kernel_size[0] 和 kernel_size[1] 是卷积核的高度和宽度。若考虑到输入输出通道以及 group,则完整卷积核的 shape 为 \((C_{out}, \text{kernel_size}[0], \text{kernel_size}[1], C_{in}/\text{group})\),其中 group 是分组卷积时在通道上分割输入 \(x\) 的组数。
- 输入:
input_x - 输入数据的地址
input_w - 输入卷积核权重的地址
bias - 输入偏置的地址
conv_param - 算子计算所需参数的结构体。其各成员见下述。
quant_param - 对int8类型进行量化计算所需参数的结构体。其各成员见下述。
core_mask - 核掩码。
ConvParameter及ConvQuantParameter定义:
1typedef struct ConvParameter {
2 void* workspace_; // 用于存放中间计算结果
3 int output_batch_; // 输出数据总批次
4 int input_batch_; // 输入数据总批次
5 int input_h_; // 输入数据h维度大小
6 int input_w_; // 输入数据w维度大小
7 int output_h_; // 输出数据h维度大小
8 int output_w_; // 输出数据w维度大小
9 int input_channel_; // 输入数据通道数
10 int output_channel_; // 输出数据通道数
11 int kernel_h_; // 卷积核h维度大小
12 int kernel_w_; // 卷积核w维度大小
13 int group_; // 组数
14 int pad_l_; // 左填充大小
15 int pad_u_; // 上填充大小
16 int dilation_h_; // 卷积核h维度膨胀尺寸大小
17 int dilation_w_; // 卷积核w维度膨胀尺寸大小
18 int stride_h_; // 卷积核h维度步长
19 int stride_w_; // 卷积核w维度步长
20 int buffer_size_; // 为分块计算所分配的缓存大小
21} ConvParameter;
22
23typedef struct ConvQuantParameter {
24 int32_t* left_shift_;
25 int32_t* right_shift_;
26 int32_t* multiplier_;
27 int32_t* filter_zp_ptr_;
28 int32_t output_zp_;
29 int32_t mini_;
30 int32_t maxi_;
31 int per_channel_;
32} ConvQuantParameter;
- 输出:
out_y - 输出地址。
- 支持平台:
FT78NEMT7004
备注
FT78NE 支持int8, fp32
MT7004 支持fp16, fp32
共享存储版本:
-
void i8_conv2d_s(int8_t *input_x, int8_t *input_w, int8_t *out_y, int *bias, ConvParameter *conv_param, ConvQuantParameter quant_param, int core_mask)
-
void hp_conv2d_s(half *input_x, half *input_w, half *out_y, half *bias, ConvParameter *conv_param, int core_mask)
-
void fp_conv2d_s(float *input_x, float *input_w, float *out_y, float *bias, ConvParameter *conv_param, int core_mask)
C调用示例:
1void TestConvSMCFp32(int* input_shape, int* weight_shape, int* output_shape, int* stride, int* padding, int* dilation, int groups, float* bias, int core_mask) {
2 int core_id = get_core_id();
3 int logic_core_id = GetLogicCoreId(core_mask, core_id);
4 int core_num = GetCoreNum(core_mask);
5 float* input_data = (float*)0x88000000;
6 float* weight = (float*)0x89000000;
7 float* output_data = (float*)0x90000000;
8 float* bias_data = (float*)0x91000000;
9 ConvParameter* param = (ConvParameter*)0x92000000;
10 if (logic_core_id == 0) {
11 memcpy(bias_data, bias, sizeof(float) * output_shape[3]);
12 param->dilation_h_ = dilation[0];
13 param->dilation_w_ = dilation[1];
14 param->group_ = groups;
15 param->input_batch_ = input_shape[0];
16 param->input_h_ = input_shape[1];
17 param->input_w_ = input_shape[2];
18 param->input_channel_ = input_shape[3];
19 param->kernel_h_ = weight_shape[1];
20 param->kernel_w_ = weight_shape[2];
21 param->output_batch_ = output_shape[0];
22 param->output_h_ = output_shape[1];
23 param->output_w_ = output_shape[2];
24 param->output_channel_ = output_shape[3];
25 param->stride_h_ = stride[0];
26 param->stride_w_ = stride[0];
27 param->pad_u_ = padding[0];
28 param->pad_l_ = padding[2];
29 param->workspace_ = (float*)0x10000000; // workspace空间需分配在AM内,计算过程中会将数据搬运到workspace空间内进行计算
30 }
31 sys_bar(0, core_num); // 初始化参数完成后进行同步
32 fp_conv2d_s(input_data, weight, output_data, bias_data, param, core_mask);
33}
34
35void main(){
36 int in_channel = 4;
37 int out_channel = 4;
38 int groups = 4;
39 int input_shape[4] = {1, 30, 30, in_channel}; // NHWC
40 int weight_shape[4] = {out_channel, 3, 3, in_channel / groups};
41 int output_shape[4] = {1, 10, 10, out_channel}; // NHWC
42 int stride[2] = {2, 2};
43 int padding[4] = {1, 1, 1, 1};
44 int dilation[2]= {2, 2};
45 float bias[4] = {0, 0, 0, 0};
46 int core_mask = 0b1111;
47 TestConvSMCFp32(input_shape, weight_shape, output_shape, stride, padding, dilation, groups, bias, core_mask);
48}
私有存储版本:
-
void i8_conv2d_p(int8_t *input_x, int8_t *input_w, int8_t *out_y, int *bias, ConvParameter *conv_param, ConvQuantParameter quant_param, int core_mask)
-
void hp_conv2d_p(half *input_x, half *input_w, half *out_y, half *bias, ConvParameter *conv_param, int core_mask)
-
void fp_conv2d_p(float *input_x, float *input_w, float *out_y, float *bias, ConvParameter *conv_param, int core_mask)
C调用示例:
1void TestConvL2Fp32(int* input_shape, int* weight_shape, int* output_shape, int* stride, int* padding, int* dilation, int groups, float* bias, int core_mask) {
2 float* input_data = (float*)0x10010000; // 私有存储版本地址设置在AM内
3 float* weight = (float*)0x10020000;
4 float* output_data = (float*)0x10030000;
5 float* bias_data = (float*)0x10040000;
6 ConvParameter* param = (ConvParameter*)0x10060000;
7 memcpy(bias_data, bias, sizeof(float) * output_shape[3]);
8 param->dilation_h_ = dilation[0];
9 param->dilation_w_ = dilation[1];
10 param->group_ = groups;
11 param->input_batch_ = input_shape[0];
12 param->input_h_ = input_shape[1];
13 param->input_w_ = input_shape[2];
14 param->input_channel_ = input_shape[3];
15 param->kernel_h_ = weight_shape[1];
16 param->kernel_w_ = weight_shape[2];
17 param->output_batch_ = output_shape[0];
18 param->output_h_ = output_shape[1];
19 param->output_w_ = output_shape[2];
20 param->output_channel_ = output_shape[3];
21 param->stride_h_ = stride[0];
22 param->stride_w_ = stride[0];
23 param->pad_u_ = padding[0];
24 param->pad_l_ = padding[2];
25 param->workspace_ = (float*)0x10070000;
26 param->buffer_size_ = 2048; // 私有存储版本中,必须设置该参数,用于确定分块计算的大小
27 fp_conv2d_p(input_data, weight, output_data, bias_data, param, core_mask);
28}
29
30void main(){
31 int in_channel = 4;
32 int out_channel = 4;
33 int groups = 4;
34 int input_shape[4] = {1, 30, 30, in_channel}; // NHWC
35 int weight_shape[4] = {out_channel, 3, 3, in_channel / groups};
36 int output_shape[4] = {1, 10, 10, out_channel}; // NHWC
37 int stride[2] = {2, 2};
38 int padding[4] = {1, 1, 1, 1};
39 int dilation[2]= {2, 2};
40 float bias[4] = {0, 0, 0, 0};
41 int core_mask = 0b0001; // 私有存储版本只能设置为一个核心启动
42 TestConvL2Fp32(input_shape, weight_shape, output_shape, stride, padding, dilation, groups, bias, core_mask);
43}